
WinSyn: Appendix
1. Overview of the Supplemental
This supplemental document complements our paper titled
“WinSyn: A High Resolution Testbed for Synthetic Data.”
It expands on our work by providing in-depth details and ad-
ditional data supporting our research into high-quality syn-
thetic data generation through procedural modeling tech-
niques. Within this document, we offer a comprehensive
look into the diversity of the photos used in our dataset, in-
cluding their geographic origins and the number of images
processed. We also present visual examples of the dataset,
including photographs, labels, synthetic images, and RAW
images, alongside an illustration of the distribution of crop
sizes.

Further, we delve into the specifics of the labels used to
annotate our images, including the guidelines provided to
labelers, ensuring clarity and consistency across the dataset.
The document includes a further examination (beyond what
was covered in the main paper) of the experiments con-
ducted to understand the impact of mixing real and synthetic
data on semantic segmentation tasks.

The details of our procedural model are explained. We
explore various modifications to the model, such as adjust-
ments in the number of rendering samples, wall materials,
mixed materials, lighting models, camera positions, win-
dow geometry, and the subset of labels captured. These
variations were evaluated to enhance the procedural model’s
fidelity and its application in replicating spatial semantics of
real scenes.

2. Photo Diversity
The numbers of photos, raw images, and their geographic
origin are shown in Table 1 on page 2. The dataset cov-
ers 28 countries, with notable contributions from Austria,
the USA, and Germany in terms of both raw and labeled
images. This diversity is important for our goal of captur-
ing a wide range of architectural styles, influenced by cul-
ture, climates, and historical contexts, which influence win-
dow designs and materials. The total collection includes
75,739 photos, with 69,713 RAW images (6,666 of them
annotated), and 89,318 distinct windows (9,002 annotated).

3. Dataset examples
We provide examples of the photographs, labels, synthetic
images, and RAW images in Fig. 3 on page 4, Fig. 4 on
page 5, Fig. 6 on page 7, and Fig. 5 on page 6, respectively.
Fig. 2 on page 3 illustrates the distribution of crop sizes.

4. Labels
Figure 1 shows the fraction by pixels of the labeled data. We
use the following labels when labeling the real and synthetic
data:

1. window-pane: Glass, painted “glass”, opening (missing
glass), mesh-screen, or repair (e.g., wood/brick covering
a broken pane)

2. window-frame: Not part of the wall, part of the window,
usually wood, metal, or plastic. Used infrequently for
door frames.

3. open-window: The interior of the building.
4. wall-frame: Part of the wall which is adapted to the win-

dow. Each of the following should have this label, but be
different instances:
(a) window apron (sill; part of the wall, below the win-

dow)
(b) window header (lintel; part of the wall, above the

window)
(c) wall frame (part of the wall; decorates/supports the

window)
(d) balcony base (support; below balcony, holds up the

balcony railings)
5. wall: Other parts of the wall
6. shutter: These are beside the window and swing side-

ways to protect and insulate the window.
7. blind: Exterior blinds. these are above the window and

move down to protect and insulate the window.
8. bars: Fixtures protecting the window and frame.
9. balcony: Guard-rails, railings, balconette.

10. misc-object: In front of the glass: people, pot-plants,
toys, junk, pipes, wires, trees, plants on the wall, alarm,
unknown objects, misc. foreground.
Other guidance provided to labelers:

• Objects seen through or “inside the frame” of the main
windows should be ignored. For example, if you can see
another window through the main window then ignore it.

• Objects reflected (in the glass) should be ignored.
• Fine window structures (leaded glass, “fake” (plastic)

leaded glass inside glass, security chain link fence,
chicken wire) should be ignored. Larger structures (cast

Figure 1. The label fraction for the different geographic partitions
of the labeled data. These statistics were collected over square
sub-cropped label masks.

1



Location Images Raw Labeled Crops Labeled Raw
Algeria 1714 1714 0 1795 0

Argentina 4153 4153 243 4610 243
Armenia 2135 2135 0 2143 0
Austria 9494 9494 2139 13966 2139

Bangladesh 1996 1996 64 2224 64
Brazil 2102 2102 35 2750 35

Canada 1999 1999 0 2115 0
China 2115 2114 0 2466 0

Columbia 663 663 0 685 0
Cyprus 2077 2077 93 2070 93
Czechia 2183 2183 102 2159 102

Denmark 233 0 78 254 0
Egypt 3873 3855 1500 4436 1496

Germany 4136 4136 861 6083 861
Greece 2045 2045 62 2085 62
India 1943 1934 0 2143 0

Ireland 2057 2057 58 2049 58
Macedonia 2024 2024 79 2050 79

misc 184 0 32 171 0
Morocco 2006 2006 0 2013 0

Philippines 1829 1828 0 2170 0
Poland 4072 4072 20 5851 20

Saudi Arabia 213 213 0 238 0
Tanzania 1597 1597 0 1644 0
Thailand 1009 1009 44 1052 44
Turkey 3027 3025 0 3116 0

UK 5541 481 2015 6760 0
USA 9319 8801 1577 10220 1370
Totals 75,739 69,713 9,002 89,318 6,666

Table 1. Breakdown of the number of photographic images by location, along with the number of images with labels, the number in
RAW format, and the number of crops (rectangle around individual windows). Note that more than one window can be cropped from a
photograph.

iron fence) should be labeled. If uncertain, ignore.
• Label other objects in front of the window as misc-object.

Other objects (e.g., in front of the wall) may be left unla-
beled or also labeled as misc-object.

5. Dataset and Architecture Experiments
We performed two experiments to study the impact of dif-
ferent mixes of real and synthetic data on the segmentation
task. For all experiments, we report the all-class mIoU ex-
cluding the ‘unlabeled’ label. The test size was 4,906 real
or synthetic data. The first experiment is presented in Fig-
ure 7; it shows the performance when training on different
amounts of real or synthetic data; we test on both real and
synthetic data. The second experiment, in Figure 8, illus-
trates the impact of different mixtures of real and synthetic
data, when tested on real data.

The segmentation task is highly sensitive to the net-

work and data selection. Therefore, we examine several ap-
proaches to cross-domain learning; none of them are able
to close the real/synthetic performance gap. This suggests
that graphical and modeling improvements to the procedu-
ral model remain important. Table 2 introduces a number of
different approaches and their task performance. We choose
not to focus on specialist domain transfer (Label Adaptation
or Unsupervised Domain Adaptation) approaches because
of the blurring of real and synthetic data during training and
the increased complexity of the techniques.
• DeepLabV3+ [4] is a more traditional deep convolutional

neural network which is used here without pre-training.
Figure 9 explores the impact of using this network for the
segmentation task, showing similar patterns to BEiT (cf.
Figure 7).

• BEiTv2 [14] is a modern transformer-based foundation
architecture that is pre-trained on other datasets. It has a
‘base’ model with 86M parameters and a ‘large’ model

2



with 300M parameters. The ‘base’ network typically
trains in 7 hours on an NVIDIA V100 card. The deci-
sion to use BEiTv2 ‘base’ for the main experiments and
variations in this paper provides a realistically challeng-
ing task balancing a reasonably quick evaluation with an
architecture representative of modern machine learning.

• Histogram Matching [7] aligns the training data’s per-
channel brightness distribution with that of the real-world
training data. Unlike the unsupervised per-image his-
togram equalization (see Appendix section 7.4), this is
semi-supervised. The method led to a minor mIoU im-
provement, from 32.58 to 32.96.

• Label Adaptation is a technique explored by [15] for en-
hancing the utility of synthetic data. Although this tech-
nique does not closely align with our goal of minimiz-
ing labeled image use, it yielded a significant improve-
ment in mIoU, from 32.58 to 41.55. This improvement
is comparable to the effect of adding 64-128 real samples
to our synthetic training set. However, we contend that
label adaptation may present an overly optimistic view of
the efficacy of synthetic data, as it often leverages real
data labels as a shape prior. In our results, we train the
label adaption network with BEiT and 4,096 real labels.
As Figure 10, we observe that improving labeling by just
learning from the labels provides a powerful supervised
prior to improve the accuracy between dataset. This semi-
supervised technique is able to identify common prob-
lems with the synthetic-trained labeling network and cor-
rect them.

• Masked Image Consistency (MIC) [10] is an Unsuper-
vised Domain Adaptation technique that uses unlabeled
real-world data to improve the training results. It is
a transformer-based architecture with several recent im-
provements including Rare Class Sampling and an Ima-

Figure 2. A scatter plot of the resolution of the 89,318 crops taken
from these photos.

geNet Feature Distance [9].
• We also provide results for an ‘easy’ real data partition

(in contrast to the standard ‘all’ partition used for other
experiments) which might a stepping-stone when creating
procedural models for challenges. We created a subset of
labeled photos that contained only rectangular windows,
without significant additional complexities (such as bars,
blinds, occlusions, or other miscellaneous objects). To
limit the modeling complexity, we evaluate this partition
with 3 labels (window pane, window-frame, and wall);
all other labels are ignored. The easy partition is of size
4,113, divided into 2,048 training and 2,065 test images.
The easy test partition is disjoint to the standard test par-
tition used in our other experiments. We experiment with
training size in Figure 9.

6. Procedural Model Details
This section provides additional details about the baseline
procedural model used to create the scenes. Figure 11 pro-
vides an overview.

Building mass. The walls, roof, bay windows, and
wings are created using the Computer Generated Architec-
ture (CGA) procedural modeling language [13]. The gram-
mar we use creates a rectangle on the floor-plane between
3 and 9 meters wide and 3 and 5 meters deep. This is ex-
truded upwards to create between 1 and 4 stories. Wings
are optionally created from the side faces; bay-windows are
extruded on the front of the mode. Hip, shed, or gable roofs
are added to the top of these masses. The front of the build-
ing and bay walls are split to create walls and window rect-
angles. Optionally, a timber-frame is created within wall
panels.

Window geometry is created within a rectangle pro-
scribed by the CGA building grammar. Because CGA isn’t
able to model curves or extrude profiles, we use a second
split grammar to create a variety of window shapes. The
output of the grammar is a grouped hierarchy of Bézier
splines, each assigned a profile, which is applied to create
a frame around a pane of glass. This allows the creation of
complex windows; for example, the outermost group may
be a window casing (around the edge of the window), a
second group has a different profile to model static panels,
while a final group of opening panels has a third profile.
A single set of profiles is selected from 14 sets available
(Figure 21, right). Each spline is then assigned one pro-
file within the set and filled with glass. The split grammar
sequences rules to convert the input rectangle into groups
within the hierarchy.

We have four classes of shapes (rectangular, trapezoid,
circular, arched). Each of these classes has several sub-
variants. For example, circular windows may become semi-
circular or window arches may be straight or curved. Each
shape has splits appropriate to that geometry (e.g., circu-

3



A
us

tr
ia

U
K

U
SA

E
gy

pt
O

th
er

Figure 3. A random selection of our 75,739 window photos and their 89,318 crops (red boxes) from Austria, Egypt, UK, USA, and Other.
Each partition contains at least 1,500 photographs. Zoom-in for easier viewing.

4



wall window-frame window-pane wall-frame misc-object blind

balcony shutter bars open-window

Figure 4. A random selection our 9,002 labeled cropped photos. Zoom-in for easier viewing.

5



wall window-frame window-pane wall-frame misc-object blind
balcony shutter bars open-window

Figure 5. Random samples from the 21,290 in the synthetic window dataset showing color and label channels. Zoom-in for easier viewing.

lar windows only split into quarters) that are applied with
certain probabilities defined by the grammar. Some shapes
split into each other; for example, the bottom of an arched
window is a rectangle and shares the splits available.

To model open windows, parts of this hierarchy may
be translated (for sash or sliding windows) or rotated (for
hinged windows). These can be identified in Figure 5 by
looking for the black open-window labels.

6



Figure 6. 6,666 of our photos contain the original RAW data as well as labels. Above: the default JPG image and labels (column 1),
reprocessed RAW files for global brightness (2), reprocessed RAW files for a given region’s (blue boxes) brightness (column 3), and a crop
of the result showing the full resolution (4).

Figure 7. Performance with different amounts of synthetic and real data. e.g., s/r was trained on synthetic (s) and tested on real (r). Models
with a sample size below 16 were repeated 5 times with different samples from the test set; these are marked with an asterisk.

Window surrounds (sills, lintels, complete frames) are
constructed from extruded profiles over splines. These dec-
orate the wall and recessed area around the window. We use
sections of the window-shape to describe the spline shapes;

for example, a window lintel is the top section of a window-
shape, which may be straight, arched, or circular. The spline
for a lintel or sill is optionally extruded sideways, beyond
the edge of the window.

7



Figure 8. Segmentation mIoU on real data when training on various mixes of real and synthetic data. The blue series shows the effect of
adding n real data to 2,048 synthetic images. The red series shows the effect of adding n synthetic data to 2,048 real images. Models with
a sample size below 16 were repeated 5 times with a different selection of n; these are marked with an asterisk.

test partition:test size network train data type train data size mIoU

all: 4906

DeepLabV3+ [4] synthetic 4096 20.92
DeepLabV3+ real 4096 34.46

BEiTv2 base [14] synthetic 16384 32.31
BEiTv2 large synthetic 16384 36.44
BEiT2 base real 4096 59.19

BEiTv2 large real 4096 65.45
BEiT2 base Histogram Matching [7] 4096 32.96

Label Adaptation [15] synthetic & real labels 2048 41.55
MIC [10] synthetic & real unlabeled 16384 44.30

easy: 2065 BEiTv2 base synthetic 2048 76.64
BEiTv2 base real-easy 2048 87.75

Table 2. An exploration of different networks, training techniques, and dataset partitions. Label adaptation uses BEiT2 regular for both
sub-networks. The ‘easy’ partition of the real data uses three labels (wall, window-pane, and window frame) for both test and train; the
‘all’ partition is our standard one. All networks were evaluated on real data and used a resolution 512x512 pixels for training and testing.

There is a small probability (0.013) of creating blind
windows (windows without a frame or glass) or a window
without glass. These features were added after observing
them in the dataset.

Interiors. Window-dressing is positioned inside the
windows, and models curtains, Venetian blinds, and
wooden or fabric blinds. The soft dressings use a cloth sim-
ulation to create bunches and gather the material for dif-
ferent positions and window shapes. Behind the dressing
we use an ‘interior-box’ onto which we project a randomly
selected interior panorama. At night, this box emits light,
simulating a lit interior. Window dressing is only applied to
the ‘primary window’ - the one which the camera is point-

ing at.
Materials. With the exception of sky-boxes, interiors,

and street clutter, all geometry is textured using procedural
shaders which define parameters for principled BSDF ma-
terials [2] and displacement. This gives the effect of mate-
rials such as wood, brick, stone, concrete, metal, and glass.
For example, our building’s walls are textured using one of
three shaders — brick, wood-planks, or (optionally peeling)
stucco, each controlled by between 20 and 30 parameters.
For stucco, these parameters control the color and glossi-
ness of the paint, color and texture of any underlying con-
crete, wear patterns between concrete and stucco, and the
amount of dirt on the surface. In addition to the parameters,

8



Figure 9. Segmentation mIoU performance against training size in a variety of scenarios. We show our standard BEiTv2 results (solid lines;
as Figure 7; pre-trained) on the complete (‘all’) data partition. We compare to DeepLabv3+ [4] (dotted lines; no pre-training, ‘all’ partition),
and BEiTv2 on the ‘easy’ partition (dashed lines, train and test on ‘easy’). Neither improvements in modern network performance, nor
using a easier simplified segmentation task, lead to a closing of the synthetic-real gap.

the input to the materials includes values from the geome-
try such as surface normal (more dirt gathers on horizontal
surfaces), global illumination maps (deep crevices are un-
likely to be damaged by wear), and ‘pointiness’ (corners
and edges are more likely to be damaged).

Using a single material for all objects in a scene would
be monotonous (but occasionally observed in the real world,
where a single type of paint has been applied to walls,
frames, pipes, and wall-frames), while using many mate-
rials can be unrealistic. To balance these issues, a num-
ber of techniques are used share materials between objects
in the scene. For example, the wall-rectangles output from
the CGA are named for their location within the grammar
tree. Then, with a 2

3 chance a single material is used for all
wall rectangles; the remainder of the rectangles are assigned
from a pool of materials of randomly selected size between
2 and the number of names. This creates the possibility
of a variety of patterns of wall materials over the facade.
Another example is window-frame and window-surround
(sills, lintels) materials. Here we use the parameter sys-
tem to share materials between different window-frames
(each scene selects this per-window probability uniformly
between 0 and 1), and to occasionally (with a 1

3 chance) use
the same material for the window-surround.

Lighting. The scene has three light sources - a panorama
providing omni-directional light based on the selected sky-
dome background image, a sun adding a directional strong
light-source, and an (optionally) lit interior material allow-
ing interior lighting at night. The sun-lamp’s light filters
through an ‘urban canyon’ that simulates the light passing
around other buildings, as illustrated in Fig 11. This is a
stochastically generated area of cuboids of mixed size and

height behind the camera. The geometry allows indirect
light paths and shadows to fall onto the building, adding
image features similar to those to in the ground truth such
as shadows from trees, telegraph poles, and light reflecting
from other buildings. The urban canyon is not directly visi-
ble to the camera or in reflections.

The sun is rotated with an azimuth between -90 to 90
degrees, with an increased chance of being near either ex-
treme. This increases the chance of the sun direction be-
ing parallel to the wall and creating large glancing shad-
ows. The altitude of the sun is normally distributed with
µ = 40, σ = 28 degrees. The size of the sun also varies -
creating the effect of light through different sky conditions.

With a probability of 0.05, we create a night scene. The
light emission from the exterior skydome and sun is re-
duced, and the interior-box is lit.

Creating well-exposed images is challenging. The light,
material, and geometry must be tuned to create both realis-
tic and balanced exposures. The variety of parameters com-
bined with the physically based renderer leads to a wide
variety of exposure between very dark and very bright im-
ages. In section 7, we explore a variant of the model which
adjusts the exposure dynamically.

Exterior. Buildings do not appear in isolation – to in-
crease variety and realism we add clutter to the outside of
the building. This includes objects as varied as trash cans,
signs, scooters, and delivery lockers. We collected a set of
278 varied meshes and textures using a hand-held LiDAR
and RGB scanner (see Fig 12) which is augmented by a set
of images of 5,630 street signs [3] with the backgrounds
removed. A subset of the meshes were gathered into collec-
tions which could be repeated to model repeating features

9



ph
oto

gt pre
dic

ted lab
el

ad
ap

tat
ion

Figure 10. Example outputs from our label adaptation [15] label-to-label network. We note that the network is able to identify likely
mislabeling (such as an open window without the open-window label) and correct the output appropriately.

such as traffic cones, rows of trees, or bollards. The pri-
mary requirements for the mesh and image clutter is that
they belong in the street scene, have no personal informa-
tion (e.g., car number plates) and do not contain building
windows (which would degrade labeling accuracy).

Drain pipes and wires are both generated from a graph
of potential edges (PEs). Paths through this graph are ex-
truded to create drainpipe or electrical wire geometry. Us-
ing a modification to CGA – allowing a face to be split to its
constituent edges – we build a graph during the evaluation
of the building mass grammar. The graph edges include the

gutter, and bottom of the walls, as well as vertical and hor-
izontal edges within each rectangle in the wall. We select
sources and sinks from the graph vertices (e.g., between the
gutter and floor level or between two random points in the
graph) and find the shortest path between them. These paths
are smoothed appropriately (e.g, wires are curved and have
much more variability), offset from the wall, meshes are
generated by extruding profiles, and are finally decorated
with textures.

A panoramic skydome adds a background that is often
visible in reflections in a window. This background is se-

10



g l

j

k

i

h

a

b

c

d

e
f

m

Figure 11. Left: A layered approach to window realism. The window is composed of nested layers of frame and glass (c) and is optionally
dressed (b, curtains). Interior (d) and exterior (e) walls divide the inside from the outside. An interior-box (a) is the geometry onto which
we project an interior panorama, while the exterior is decorated with street clutter (f). Right: Our environment rig. The building geometry
lies on a floor plane (m) under a skybox (h). It is lit by the skybox and from a directional sun lamp (g), which may cast shadows from the
urban canyon (l). The camera is positioned in front of the building (k), pointing towards the camera target (j) within the primary window.

lected from a library of street-view images. The background
may contain other buildings’ windows; to avoid degrading
the quality of labeling results, this area is unlabeled. A sim-
ple circular floor supports the building.

Camera Position. The baseline camera positioning
switches between two modes: one third of scenes sample
the camera’s position uniformly from inside a box the width
of the building, between 0.5 and 1m from the ground, and 2
to 8m from the facade. The other third are sampled from a
position in front of the window - sampled from a 4× 2 me-
ter box parallel to the wall positioned directly in front of the
window. This combination was motivated to approximate a
held camera, and occasional use of a higher camera (on a
hill or from a neighboring building).

The camera’s field of view is computed from the angle
between the corners of the window and the camera posi-
tion. It is perturbed from the largest apparent angle be-
tween window diagonals by a normally distributed factor
with µ = 1.1σ = 0.1. The camera’s direction is com-
puted with z-up, pointing towards a target uniformly sam-
pled from a 20 × 20cm rectangle in the center of the win-
dow.

Occasionally a camera positioned in this way will be be-
hind a large street clutter mesh. If 2 out of 5 key points (cor-
ners and center) on the window are occluded, the offending
clutter object(s) are removed.

Parameters The design of the parameter system in a
synthetic model has a number of goals. Primarily, it should
create distributions of parameters with a good evaluated
task accuracy and visual realism.

To achieve these goals within a complex realistic model,
it is necessary to start with an estimated distribution, which
can be iteratively refined with a generate-inspect-update

process. While some progress has been made on auto-
mated parameter selection [12], our large number of param-
eters (up to 21,735 observed) and non-differentiable ren-
derer makes this challenging; these constraints are conse-
quences of our decision to focus on variety (a large number
of parameters are required to drive and coordinate a large
number of features with high variety) and realism (we use
a physically based path-tracing render). Therefore, an ini-
tial parameter distribution is usually estimated by the engi-
neer or artist who creates the synthetic model. Often these
parameters will be estimated on a prototype or incomplete
model. A parameter system must therefore support itera-
tive development by tracking parameter and code changes
together with their impact on task performance, and be able
to explore sequences of changes in the distributions.

The parameter system should be reproducible; that is, we
must be able to run the same software code-path multiple
times when debugging or rendering different variations of
the same geometry on a cluster of computers. It should also
be robust – small changes in the model’s code should have
small changes in the output. These requirements together
imply that the parameter system has to run in a hybrid mode,
with zero or more parameters specified, and others drawn
from the distribution.

The system must support both continuous (e.g., window
width, wall texture color) and discrete (e.g., shape of win-
dows, type of window dressing) parameters. The distribu-
tions WinSyn uses are typically uniform or Gaussian for
continuous parameters and Bernoulli for discrete parame-
ters. But combinations of these quickly become complex
when repeated parameter selection moves control to dif-
ferent code branches; these branches may be a function of
both parameters and geometry. An example is window-pane

11



splitting – we may continue to split windows until we hit
a geometry constraint (they become small) or a parameter
decides we should stop (e.g., maximum split depth or stop-
ping early to create more large windows). Another example
is that our building modeling language, CGA [13] uses re-
peated ‘relative splits’ in which a parameter (for example a
uniform continuous window panel width parameter) is ad-
justed to fit an integer number of windows into a wall (a
geometric constraint).

We found that apparent realism was enhanced when it
was possible to share parameters between disparate parts of
the model. For example, to use the same material on a wall
as window-frame, balcony base, or drain pipe.

To implement these requirements WinSyn uses several
mechanisms in concert to build a parameter system.
• The distributions are defined in the code by their type and

parameters (for example mean and deviation for a Gaus-
sian). At runtime, these are sampled, keyed from a unique
name.

• To ensure the names remain unique between code
branches (e.g, for each window independently), we com-
partmentalize the name spaces into nodes. These are
stored in a tree parallel to the code branches.

• The sampled parameters are stored in a tree of nodes. This
is serialized to disk (as a JSON file) named for the random
seed of the root node.

• With some probability distribution, a certain node may
differ from a sample to its parent. This mechanism sup-
ports shared parameters across the model.

• If the same model is rerun, we load the node-tree. As the
model is executed we look up values in the tree: found pa-
rameters are returned (this provides reproducibility) oth-
erwise they are sampled. We may have to perform mixed
lookup and sampling if the code has changed, causing dif-
ferent values to be sampled (this provides robustness).

• As each node is created, a pseudo-random generator is
created and initialized by a parameter sampled from the
parent node’s generator. This compartmentalized random
increases robustness, as subsequent samples from the par-
ent generator will not impact the children. The seed for
the root node describes the whole scene and is computed
as a hash of the current time and compute node.

• We track changes to our distributions through develop-
ment using version control software and a continuous in-
tegration system. This allows us to track segmentation
task accuracy as source code changes are made.
During the development of WinSyn, we iterated the pa-

rameter distributions based on assessed mIoUs on real train-
ing data, synthetic data, as well as label integrals (Figure
13). Careful examination of these results often reveals fea-
tures that are under-performing. We found that evaluating
labeling accuracy on synthetic hold-outs was useful for val-
idating synthetic labeling and identifying bugs.

Figure 12. A sample of 27 laser-scanned clutter meshes from our
collection of 278 (of which 38 are suitable for placement on the
wall).

Rendering. We use the Cycles renderer [1], with 256
samples per pixel and the default Open Image Denoiser [11]
at 512 × 512 pixel resolution to create our color images.
The average time to generate a synthetic datum (color im-
age and label map) was 49.8 seconds. The dominant aspect
of the rendering was the geometry generation (mean 38.1
seconds), followed by the rendering of the color image (9.2
seconds), and finally the rendering of the labels (2.4 sec-
onds). As in Figure 14 there was considerable variation in
these values. We observe the time to generate an image was
dominated by the geometry generation. The hardware used
for these timings was an NVIDIA Tesla P100 with a shared
Intel(R) Xeon(R) CPUs E5-2699 v3 @ 2.30GHz. This was
a single GPU from a multi-GPU machine, so timings may
have been affected by other users’ workloads. However, it
allowed us to distribute work in parallel over 12 nodes, and
generate the entire dataset of 21,290 images within a day.

System. This synthetic image generation system is im-
plemented in Python 3.10 within the Blender [5] 3.3 mod-
eling package. We make use of a number of Blender’s fea-
tures including:
• Screen-space subdivision allows our procedural textures

(e.g., brick) to generate geometry as a separate depth
channel. This allows the textures to self-shadow (e.g.,
one brick casting onto a brick below), but can be GPU
memory intensive.

• Geometry-nodes are utilized to create features that is con-
tain repeated components and benefit from shared geome-
try instances. We use them to create roof tiles, dirt (leaves
and litter) on the floor, blinds, and slats. Using the node-
based ‘language’ to describe these is somewhat limiting,
but allows faster development and lower memory use.

• Publicly available shaders and geometry nodes-trees.
There are a wide number of marketplaces with content
available for Blender for free or relatively low cost. How-

12



real

synthetic baseline

camera, r=0m

camera, r=6m

camera, r=24m

no rectangles

only squares

wide windows

camera, r=48m

no
ne

wind
ow

pa
ne

wind
ow

fra
me

op
en

wind
ow

wall
fra

me

wall sh
utt

er

bli
nd

ba
rs

ba
lco

ny

misc
ob

jec
t

Figure 13. Label integrals for different datasets. For each label (columns) in each dataset (rows) we sum the label masks and normalize
per-image. The top row is our ground truth labeled photographs (n = 9, 002). The second row shows our baseline procedural model
(n = 21, 290). The following rows show various variations (n = 2, 048) - the camera location variations (0m..48m), and window
geometry experiments (no rectangles, wide windows, only squares).

ever, the licenses may limit the downstream applications
and distribution of the model.

7. Variations
One advantage of WinSyn is that the compact domain al-
lows rapid experiments and iteration. Exploiting this, we
create 64 synthetic datasets, each of size n = 2, 048 and
resolution 512 × 512 pixel, as variations of our baseline
synthetic data with different sizes and mixes of real or syn-
thetic data, geometry, textures, lighting, labels, and camera
positions. These are used to train a segmentation network
and test on our standard real data partition of 4, 906 pho-
tos. For comparison, the accuracy of the baseline synthetic
model was on this partition was 32.58. We provide an anal-
ysis of these results as a demonstration of the testbed and

to provide guidance to others creating synthetic procedural
models.

7.1. Rendering samples

We evaluated the impact of samples per pixel (spp) on ren-
der quality. This was implemented by changing the parame-
ters in the Cycles renderer, and disabling the neural denoiser
that is now industry standard. All images (in this, an other
variations) were stored uncompressed to avoid introducing
additional artifacts into already noisy images. See the main
paper for results.

7.2. Wall Materials

Here we increase the number of wall materials from 1 to
128, w ∈ {1...128}. All other objects use the baseline
material distributions; the wall is assigned materials from

13



Figure 14. Generation time histogram for the synthetic dataset. Note the log-scale axes as the process was dominated by the geometry
generation. Mean total time per sample was 49.8 seconds. The physics simulator ran within the geometry generator for timing purposes.

Figure 15. Relative mIoU and FID performance of each synthetic variation in comparison to real photographs. Each sequence of exper-
iments has a different color. mIoU is measured against our standard real test-split. FID is measured against all 89,318 photo crops; in
the case of countries, those countries themselves are excluded. For mIoU, train size is 2,048 for synthetic variations, 1,024 for individual
countries, and 4,096 for all countries; the test split is our standard 4, 906. Exact values for the variations are provided in Figure 23.

a material library [6]. The results are shown in Figure 17, as well as the main paper; we note that although the single-

14



Figure 16. Top: segmentation task accuracy over datasets with different numbers of wall materials. Bottom: samples from the w = 1 (left)
and w = 128 (right) variations.

Figure 17. The impact of different numbers of discrete wall materials w.

class mIoU of wall is still improving at w = 128, the overall
mIoU saturates due to the impact on other classes.

15



Figure 18. The impact of a variety of different materials on labeling task performance.

7.3. Mixed Materials

While the above materials results give a deep view of the
impact of single-class materials, we also study a wide sce-
nario - applying a wide variety of materials to all object
classes. Four of these material variations use no lighting
model (labels, albedo, normals, and lines). The remainder
use a simple diffuse lighting model, with no direct sun (as
Figure 18). The geometry is identical for each render. The
material variations studied are:
• labels: The labels rendered from the synthetic dataset.

These were included as a baseline for a ‘bad’ variation
with label cohesion, but very low realism.

• albedo: The albedo pass from the renderer.
• normals: The screen-space normal map.
• vornoi chaos: Each object has the same 3D vornoi-cell

texture, but with different scale and offset parameters.
Each cell has a random color.

• monomat: For each object type in the scene, we apply the
same material across the whole dataset. The parameters
for the procedural materials are fixed.

• col per object: Each object in the scene is a random
color.

• diffuse: The entire scene has a single mat material with
gray color.

• edges: An edge renderer is used to create a sketch-like
image of the scene.

• texture rot: For each object, we select one from a collec-

tion of 50 geometric textures, and apply random lighting
and scale.

7.4. Lighting Models

The results from the lighting variations are shown in Fig-
ure 19. Each variation explores a different aspect of the
lighting model. The variations modeled are:
• albedo: (as the Material variation) The albedo pass from

the renderer. No other lighting terms.
• phong diffuse: The diffuse term from the Phong lighting

model with a gray material. No other lighting terms.
• diffuse: (as the Material variation) The entire scene has a

single matt material with gray color.
• night only: Only the night (less light from the sun,

brighter internal lighting) mode is used. Dark images.
• no sun: No directional light source in the scene.
• no bounce: The path tracer terminates the trace after the

first bounce.
• fixed sun: The sun is always in the same location and size.
• day only: Only use the day lighting model (no night).

The usual whitening across a dataset is performed on all
variations before training and testing; but this post-process
reduces useful color depth and is dataset-wide. For these
lighting experiments, we also examine a per-image expo-
sure pass within the render pipeline to preserve color depth
and perform brightness equalization. This is similar to his-
togram equalization in that it adjusts the image brightness,
but based on the central areas of the image, simulating the

16



Figure 19. The impact of different lighting models on the labeling task mIoU.

auto-exposure mechanism in a digital camera. We can see
that for poorly exposed dataset (such as night only) this sig-
nificantly improves the performance. However, for better
balanced datasets (day only) there is a slight performance
degradation (Figure 19).

Generally, it is important to have realistically exposed
images. The synthetic model has a night-time mode un-
der the assumption that windows would look very differ-
ent when lit from within; however, the night-time lighting
setup was counter-productive, reducing task effectiveness.
In contrast, a sun with multiple positions creating shadows
was somewhat useful to the task.

7.5. Camera Position

Windows are a useful domain for studying camera position
distribution as they have an obvious unambiguous canoni-
cal orientation. In this variation, we experimented with the
distribution of camera positions. We used a simple model
which sampled a camera position over a circle, of radius r

meters, truncated at the floor plane (Figure 20, right). The
circle is positioned 5 meters from the wall, directly in front
of the window. As r increases, the majority of the circle
area moves away from the window, and so the camera angle
to the wall becomes very shallow in many samples. Larger
circles have a large fraction of their area higher up, so cre-
ate unusual camera angles not present in the photographic
dataset. However, we observe that high r does not impact
the segmentation task accuracy as strongly as we might ex-
pect (Figure 20, left). Note that extreme camera angles may
be able to see windows perpendicular to the primary win-
dow on which the camera camera is targeted. We conclude
that our model is only somewhat sensitive to the distribution
of camera positions.

The baseline models removes clutter from the scene
which occludes the camera view of the primary windows.
These variations do not perform this occlusion check. At
more extreme camera positions, there is a greater chance
that objects (wall clutter, bay windows, or balconies) block

17



Figure 20. Left: the mIoU and average accuracies for different camera-sampling-circle radii, r. Right, top: The position of the circles’
centers is 5m (black line) front of the top right window. For scale, the green circle has r = 12m. Bottom: samples from the different
distances.

the view of the primary window.

7.6. Window Geometry

Here we study the impact of changing the distribution of
parameters which impact the window geometry, as Fig 21.
Note we do not have a uniform base geometry in this exper-
iment as the distribution changes impacted scene-wide ge-
ometry and material choices. The label integrals for some
of our parameter distributions are shown in Figure 13. The
window geometry distributions variations are:
• no rectangles: Only non-rectangular windows (circular,

arched, and angled)
• only squares: Only square windows.
• no splits: No window-pane subdivision took place. Each

window has a single pane.
• only rectangles: Only rectangular windows.
• single window: Only a single window created.
• wide windows: The width/height parameters are adjusted

to create wider, shorter windows.
• mono profile: We reduce the number of all the extruded

profiles in the system. These are used on window frame,
sill, lintels, roof gutters. The set of profiles used for win-
dows is reduced from the baseline (Fig 21, right) to a sin-
gle profile.

7.7. Labels modeled.

Real-world diversity of even simple man-made objects such
as windows is huge (as Figure 3). When developing a proce-
dural model as a synthetic data generator, we must allocate

software development effort effectively. Our model was de-
veloped approximately in order of label sizes: largest first.
In this variation, we take the completed model, and perform
ablations by removing each class in turn to study the im-
pact of each class in a systematic manner. The main paper
introduces the all-class mIoU and Figure 22 illustrates the
per-class breakdown. We observe the diminishing returns
in mIoU for the later labels, as the features get smaller and
the larger choice of labels makes labeling harder.

The label-level (‘lvl’) variations are:
• lvl1: Only the wall geometry is present.
• lvl2: Add a window panes. It is not recessed.
• lvl3: Add a wall-frame and recess the window pane.
• lvl4: Add a window-frame and any splits to the window

panes.
• lvl5: Add window shutters.
• lvl6: The balconies are added. These use the balcony

for their guard rails and wall-frame labels on their lower
parts.

• lvl7: Wall and floor clutter is added to the scene.
• lvl8: Add window blinds.
• lvl9: The final label to add we add is bars.

The full model includes additional features beyond lvl9,
such as interior dressing, open windows, and windows-
without-glass.

7.8. Summary

Figure 15 provides a summary of the variations’ segmenta-
tion performances as well as the Frechét Inception Distance
(FID) [8] to the ground truth. FID provides an estimate as

18



*

Figure 21. Top: The impact of changing the window shape and geometry on the mIoUs of the labeling task. Bottom left: examples of the
n = 2, 048 training examples in each variation. Bottom right: the full set of window-frame profiles for the baseline model; an asterisk
marks the single profile used in the mono profile variation. Note vertical axis starts at non-zero.

to the quality of the variation with respect to our real-world
photos independent of segmentation task. We observe that
different variations have widely different increases in seg-
mentation task performance for FID improvements. That is,
FID improvements are an inconsistent indicator of task per-
formance between different variations, but somewhat use-
ful within a single variation. We see this in Figure 15 as
different sequences of variations approach the baseline at
different angles – some variations allow large increases in
performance while minimally impacting FID (such as la-
bels modeled), while others have a large impact in FID, but
much lower improvements in mIoU (camera position).

At the end of this Section, in Figure 23, we show samples
from the images created for each variant dataset explored
in the paper and provide their mIoU and FID against the
ground truth. We continue to describe how each variation is
modified from the baseline described above.

19



Figure 22. The impact on the per-class IoU of modeling each label. We note that sometimes modeling more labels will harm segmentation
quality.

20



random samples mIoU

baseline

labels

exposed(baseline)

histo(baseline)

histo(exposed(baseline))

baseline albedo

diffuse

phong diffuse

normals

edges

col per obj

texture rot

voronoi chaos

baseline depth

1spp

2spp

4spp

8spp

16spp

32spp

64spp

128spp

256spp

512spp

name

32.59 40.24

6.48 249.15

32.41 51.21

32.96 39.11

32.68 51.60

16.95 95.94

22.36 109.58

15.81 191.54

17.32 200.32

24.61 245.22

21.55 163.40

26.65 169.85

19.30 274.39

7.23 220.69

8.26 188.08

10.50 161.04

15.89 131.62

20.81 112.94

24.75 95.62

26.22 82.96

27.91 71.92

28.94 63.41

29.31 57.43

FID

na na

monomat

night only

exposed(night only)

no sun

exposed(no sun)

no bounce

exposed(no bounce)

fixed sun

exposed(fixed sun)

day only

exposed(day only)

camera, r=0m

camera, r=3m

camera, r=6m

camera, r=12m

camera, r=24m

camera, r=48m

camera, r=96m

lvl1

lvl2

lvl3

lvl4

lvl5

lvl6

lvl7

lvl8

lvl9

no rectangles

only squares

no splits

only rectangles

single window

wide windows

mono profile

wall materials,w=1

wall materials,w=2

wall materials,w=4

wall materials,w=8

wall materials,w=16

wall materials,w=32

wall materials,w=64

wall materials,w=128

19.77 55.30

27.24 67.27

30.89 54.39

29.02 52.67

28.97 54.01

30.08 57.87

30.54 58.67

31.13 50.82

31.91 56.21

32.24 49.14

31.96 52.11

30.33 51.64

32.62 51.68

32.76 54.49

33.09 66.97

32.55 90.06

30.18 110.93

29.77 125.89

5.10 157.19

12.22 78.29

16.88 65.77

23.73 43.79

25.42 43.56

28.48 42.39

29.98 52.20

32.40 52.20

33.80 50.78

30.34 68.74

30.63 45.07

31.06 59.96

31.24 47.37

31.74 48.47

32.04 61.75

32.20 48.51

23.04 51.13

28.23 45.24

27.88 42.25

29.94 42.65

31.48 43.84

32.28 43.69

32.72 42.68

32.49 43.15

Figure 23. Each row shows samples from the 2,048 images in each variant, with the associated the mIoU and FID. The mIoU is calculated
against the test partition of the labeled data, while the FID is calculated against all cropped photos; these are not shown for the depth
‘variation’. We denote the renderer’s exposure pass as exposed() and histogram equalization as histo()

.

21



References
[1] Cycles: Open Source Production Rendering. Blender

Foundation, 2023. 12
[2] Brent Burley and Walt Disney Animation Studios.

Physically-based shading at disney. In Acm Siggraph,
pages 1–7. vol. 2012, 2012. 8

[3] Prem Chedella and Kelly Tom. Street sign dataset,
2022. 9

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image
segmentation. In Proceedings of the European con-
ference on computer vision (ECCV), pages 801–818,
2018. 2, 8, 9

[5] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2023. 12

[6] Petr Dlouhý. BlenderKit - Improved Blender workflow
with new ideas., 2023. 14

[7] Rafael C Gonzales and Paul Wintz. Digital image pro-
cessing. Addison-Wesley Longman Publishing Co.,
Inc., 1987. 3, 8

[8] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge
to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017. 18

[9] Lukas Hoyer, Dengxin Dai, and Luc Van Gool.
Daformer: Improving network architectures and train-
ing strategies for domain-adaptive semantic segmen-
tation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9924–9935, 2022. 3

[10] Lukas Hoyer, Dengxin Dai, Haoran Wang, and Luc
Van Gool. Mic: Masked image consistency for
context-enhanced domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11721–11732, 2023. 3, 8

[11] Intel. Intel® Open Image Denoise. Intel, 2023. 12
[12] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cam-

eracci, Justin Yuan, Matt Rusiniak, David Acuna, An-
tonio Torralba, and Sanja Fidler. Meta-sim: Learning
to generate synthetic datasets. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 4551–4560, 2019. 11

[13] Pascal Mueller, Peter Wonka, Simon Haegler, Andreas
Ulmer, and Luc Van Gool. Procedural modeling of
buildings. ACM Trans. Gr., 25(3):614–623, 2006. 3,
12

[14] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye,
and Furu Wei. Beit v2: Masked image modeling with
vector-quantized visual tokenizers, 2022. 2, 8

[15] Erroll Wood, Tadas Baltrusaitis, Charlie Hewitt, Se-
bastian Dziadzio, Thomas J. Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the
wild using synthetic data alone. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV),
pages 3661–3671. IEEE, 2021. 3, 8, 10

22


	. Overview of the Supplemental
	. Photo Diversity
	. Dataset examples
	. Labels
	. Dataset and Architecture Experiments
	. Procedural Model Details
	. Variations
	. Rendering samples
	. Wall Materials
	. Mixed Materials
	. Lighting Models
	. Camera Position
	. Window Geometry
	. Labels modeled.
	. Summary


